Paradigm Shift to Outcomes-Based Education

Dr. Cynthia C. Llanes
Vice President for Academic Affairs
Technological Institute of the Philippines
Quezon City

CHED Region 4
February 7, 2018
Outline of Presentation

1. Introduction - Rationale
2. Basic concepts of outcomes-based education (OBE) and outcomes-based teaching and learning (OBTL)
3. Implementation of Outcomes-Based Education (OBE) at the institutional level and Outcomes-Based Teaching and Learning (OBTL) at the classroom level
4. CHED OBE-related Requirements and Monitoring
5. Summary
Intended Learning Outcomes

At the end of this session, the participants should be able to:

1. Explain the basic concepts of outcomes-based education (OBE) and outcomes-based teaching and learning (OBTL)

2. Plan and implement a program on outcomes-based education at an institutional level and outcomes-based teaching and learning at the classroom level.
Rationale: OBE in the Philippines
The need to implement OBE OBTL

CHED Memorandum Order No. 37 s. 2012. Policies, standards and guidelines in the establishment of an outcomes-based education (OBE) system in higher education institutions offering engineering programs.
The need to implement OBE OBTL

CHED Memorandum Order No. 46 s. 2012. Policy-standard to enhance quality assurance (QA) in Philippine higher education through an outcomes-based and typology-based QA
The need to implement OBE OBTL

CHED CMO 20 s.2015. Consolidated Policies, Standards, and Guidelines for BS Marine Transportation and BS Marine Engineering Programs required the submission of revised detailed syllabi in all courses using the CHED prescribed format incorporating the elements of OBE/OBTL
The need to implement OBE OBTL

The CHED Memorandum Order No.17 s. 2015. Revised Implementing Guidelines for CHED COE COD for Engineering Programs specifies **OBE Implementation as a major requirement equivalent to 30 points**
The need to implement OBE OBTL

The ITE COD COE Criteria requires complete teaching portfolio showing OBE implementation
The need to implement OBE OBTL

The PACUCOA level 4 Criterion 1. Excellent outcomes of the program in teaching and learning requires **OBE/OBTL elements** such as:

- Constructive alignment of teaching and learning goals from the institutional level to program level
- Implementation of TLAs towards the attainment of learning outcomes
- Assessment and Evaluation of Learning Outcomes
- Continuous Improvement
The need to implement OBE OBTL

The ABET, PTC and PICAB accreditation are outcomes-based accreditation requiring a set of program outcomes, assessment and evaluation of the attainment of each outcomes and continuous quality improvement.
The need to implement OBE OBTL

CHED Administrative Order No. 01 s. 2014

“.....the revised Policies, Standards and Guidelines (PSGs) that Technical Committees and Panels are tasked to produce shall reflect the shift to learning competency based standards/outcomes-based education......
Compliance of HEIs (Section IV of CHED AO 01.s. 2014)

Using the CHED Implementation Handbook for OBE and ISA as reference, a HEI shall develop the following items which will be submitted to CHED when they apply for a permit for a new program or the approval of the transformation of existing programs to outcomes-based framework:

- The complete set of **Program Outcomes**, including its proposed additional program outcomes.
- Its proposed curriculum, and its justification including **Curriculum Map**.
Using the CHED Implementation Handbook for OBE and ISA as reference, a HEI shall develop the following items which will be submitted to CHED when they apply for a permit for a new program or the approval of the transformation of existing programs to outcomes-based framework:

- Proposed **Performance Indicators** for each outcome. Proposed measurement system for the level of attainment of each indicator.
- Proposed **Outcomes-Based Syllabus** for each course. This should already be indicative of the plan of **Delivery** of the curriculum, student assessment and of the resources to be deployed.
Compliance of HEIs (Section IV of CHED AO 01.s. 2014)

Using the CHED Implementation Handbook for OBE and ISA as reference, a HEI shall develop the following items which will be submitted to CHED when they apply for a permit for a new program or the approval of the transformation of existing programs to outcomes-based framework:

- Proposed system of program Assessment And Evaluation
- Proposed system of program Continuous Quality Improvement (CQI)
Compliance of HEIs (Section IV of CHED AO 01.s. 2014)

- The complete set of **Program Outcomes**, including its proposed additional program outcomes.
- Its proposed curriculum, and its justification including **Curriculum Map**.
- Proposed **Performance Indicators** for each outcome. Proposed measurement system for the level of attainment of each indicator.
- Proposed **Outcomes-Based Syllabus** for each course. This should already be indicative of the plan of **Delivery** of the curriculum, student assessment and of the resources to be deployed.
- Proposed system of program **Assessment And Evaluation**
- Proposed system of program **Continuous Quality Improvement (CQI)**
MEMORANDUM FROM THE OVERSIGHT COMMISSIONER FOR MARITIME EDUCATION

TO: ALL MARITIME HIGHER EDUCATION INSTITUTIONS RECOGNIZED TO OPERATE THE BSMT AND/OR BSMAS PROGRAM/S FOR SY2015-2016

SUBJECT: IMPLEMENTATION OF THE REVISED CURRICULUM AS PER CMO No. 20, SERIES OF 2015

DTAE: July 22, 2015

Pursuant to CHED Memorandum Order No. 20, series of 2015 specifically Section 1, which provides that “...any proposed revision made by MHEIs to its curriculum shall be submitted to the CHED for approval...”, all MHEIs are required to submit revised curriculum and syllabi detailing the changes made and the catch up plan for the affected students.

The approval of your institutions’ curriculum is a requirement to ensure that students for SY2015-2016 are able to meet the prescribed standards of the International STCW as amended by the time they graduate in 2019 and all other students in different levels.

In view of this, you are hereby reminded and enjoined to submit the revised curriculum and syllabi detailing the changes made and the catch up plan for affected students to CHED Central Office, Maritime Education Section on or before 31 July 2015.

Please download the submission templates at https://sites.google.com/site/maritimeedgums."
Standard Template of Submissions for MHEIs

Paper Size: A4
Font: Arial
Font Size: 12
Spacing: Single space
Orientation: Landscape
Margin: 1” (left, right, top and bottom)

Minimum Syllabus requirements: Course Code, Course Name, Course Description, Course Outcomes, STCW Competence, STCW KUP, Performance/ILO, TLA, Assessment, Timetable

The curriculum should include the 4 year program of study

- Course should be guided by tabs

- 3-Ring binder by year level, by course program (BSMT or BSMarE)

Prepare 2 sets (1 for CHED and 1 as receiving copy – to be returned to MHEI once approved)
HANDBOOK ON TYPOLOGY, OUTCOMES-BASED EDUCATION, AND INSTITUTIONAL SUSTAINABILITY ASSESSMENT

..\Handbook on Typology Outcomes(1).pdf
Paradigm shift

Traditional Education → outcomes-based education
Basic concepts of outcomes-based education
Which do we use?

• Outcomes-based education?
• Outcomes based education?
• Outcome-based education?
• Outcome based education?
• OBE?
• OBTL?

OBE Version One: Outcome-Based Education

• “Outcome-based education” - proposed by William Spady in 1994 as an individualized programme for disadvantaged school students.

• Instead of teaching the standard disciplines, targets for each student to reach were set up so that all could achieve some sort of success.

OBE Version Two

• This version came from the accountability movement in the USA (Ewell, 1984; Miller and Ewell, 2005)

• The ‘outcomes’ are at the institutional level, comprising averaged student performances and other kinds of institutional outcomes

OBE Version Three: Outcomes-Based Teaching and Learning (OBTL)

• Introduced in the Dearing Report (1997)
• Outcomes are defined specifically to enhance teaching and assessment

Which do we use?

- Outcomes-based education?
- Outcomes based education?
- Outcome-based education?
- Outcome based education?
- OBE?
- OBTL?

• **Outcome-based**: used by Spady at school level
• **Outcomes-based**: for tertiary
• **OBE**: concerned with institutional level outcomes
• **OBTL**: classroom level OBE that addresses teaching and learning

Outcomes-Based Education
- as strategy to achieve long term objectives of HEI for its graduates.
OUTCOMES-BASED TEACHING AND LEARNING (OBTL)

- Applied at the classroom level
- In support of outcomes-based education
- As a strategy to promote academic excellence
Figure 3. Framework for Outcomes-based Education
CHED OBE-MF-02.xlsx
TIP Outcomes-Based Education Framework

TIP EXTERNAL
- External regulatory bodies (CHED, PRC, IMO etc.)
- Local and International Accreditation, Certifications, and Standards
- External Constituents

TIP INTERNAL
- Institutional Vision, Mission, Core Values, Core Competencies, Quality Policy
- TIP INITIATIVES: Faculty / Staff Development, Student Development

TIP OBE
- Long-term Goals for Alumni (LGA)
- Continuous Quality Improvement (CQI)
- Facilities Management Processes and Procedures, Resources and Support Structures, Sub-Systems

Other sources of information 1, 2, 3, 4, 5

Revision Status: 1/28 December 2011 /2:00 PM
2010 TIP BENCHMARKING VISIT ON OBTL AT CITY UNIVERSITY OF HONG KONG
2012 INTERNATIONAL CONFERENCE ON OBTL WITH JOHN BIGGS AND CATHERINE TANG
2014 BENCHMARKING VISIT ON OUTCOMES-BASED ASSESSMENT AT THE UNIVERSITY OF MELBOURNE
2014 BENCHMARKING VISIT ON OUTCOMES-BASED ASSESSMENT AT MONASH UNIVERSITY
2014 BENCHMARKING VISIT ON OUTCOMES-BASED ASSESSMENT AT ENGINEERS AUSTRALIA

"Adopt as your fundamental creed that you will equip yourself for life, not solely for your own benefit but for the benefit of the whole community."

COMMISSION ON HIGHER EDUCATION

1994

OFFICE OF THE PRESIDENT OF THE PHILIPPINES
2014 BENCHMARKING VISIT ON OUTCOMES-BASED ASSESSMENT AT UNIVERSITY OF SYDNEY
External Validation of T.I.P.’s OBE

ABET Accreditation of 14 Engineering Programs and 6 Computing Programs

Seoul Accreditation of 6 Computing Programs
The OBTL Framework*

- Intended Learning Outcomes (ILOs)
- Teaching and Learning Activities (TLAs)
- Assessment Tasks (ATs)

*City University of Hong Kong
Intended Learning Outcomes (ILOs)

- ILOs describe what the learners will be able to do when they have completed their course or program.

Intended Learning Outcomes (ILOs)

• These are statements, **written from the students' perspective**, indicating the level of understanding and performance they are expected to achieve as a result of engaging in teaching and learning experience.

Teaching and Learning Activity (TLA)

• Any activity which **stimulates, encourages or facilitates learning** of one or more intended learning outcome.

Assessment Task (AT)

Assessment can be any method of assessing how well a set of ILO has been achieved

What are the benefits of OBTL?

OBTL promises a high level of learning for all students as it facilitates the achievement of the outcomes, characterized by its appropriateness to individual learner’s development level and active and experience-based learning.

Source: University of Hong Kong OBTL Materials
How do we implement OBE/OBTL?
Begin with the end in view
“What kind of Graduates do we want to produce?”
Formulation of Intended Learning Outcomes (ILOs) at three Levels:

1. Institutional Level
2. Program Level
3. Course Level

Intended Learning Outcomes (ILOs) at three levels:

The **institutional level**, as a statement of what graduates of the institution are supposed to be able to do.

The **degree program level**, as a statement of what graduates from a particular degree program should be able to do.

The **course level**, as a statement of what students should be able to do at the completion of a given course.

Institutional Level

- Institutional Intended Learning Outcomes
- Graduate attributes

...For the HEIs, this means describing the attributes of their ideal graduates based on their visions and missions as part of their institutional goals or outcomes, and using these as bases for developing specific program outcomes..... (CHED Handbook on Typology, OBE and ISA, 2014)
TIP Graduate Attributes
Institutional Intended Learning Outcomes (IILOs)

<table>
<thead>
<tr>
<th>Graduate Attributes</th>
<th>Intended Learning Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professional Competence</td>
<td>Demonstrate understanding and mastery of the fundamental knowledge and skills required for effective professional practice in the field of specialization.</td>
</tr>
<tr>
<td>Critical Thinking and Problem Solving Skills</td>
<td>Exercise critical and creative thinking in providing solutions to discipline-related problems.</td>
</tr>
<tr>
<td>Communication Skills</td>
<td>Apply effective communication skills, both orally and in writing, using the English language.</td>
</tr>
<tr>
<td>Lifelong Learning</td>
<td>Utilize lifelong learning skills in pursuit of personal development and excellence in professional practice.</td>
</tr>
<tr>
<td>Social and Ethical Responsibility</td>
<td>Hold personal values and beliefs as ethical professional consistent with Filipino family values, industry-desired values and global citizen values.</td>
</tr>
<tr>
<td>Productivity</td>
<td>Contribute to nation-building and national development through application of new technology.</td>
</tr>
<tr>
<td>Interpersonal Skills</td>
<td>Work effectively in multi-disciplinary and multicultural teams.</td>
</tr>
</tbody>
</table>
Intended Learning Outcomes (ILOs) at three levels:

Institutional Level

The *institutional level*, as a statement of what graduates of the institution are supposed to be able to do.

Program Level

The *degree program level*, as a statement of what graduates from a particular degree program should be able to do.

Course Level

The *course level*, as a statement of what students should be able to do at the completion of a given course.

Program Level

• Program Educational Objectives (PEOs)
• Student Outcomes (SOs)/Program Outcomes (POs)
Program Level

Program Educational Objectives

Program educational objectives are broad statements that describe the career and professional accomplishments that the program is preparing graduates to achieve within 3 to 5 years of graduation.

Program Educational Objectives are based on the needs of the program's constituencies.

(CMO No. 37 s. 2012. Policies, standards and guidelines in the establishment of an outcomes-based education (OBE) system in higher education institutions offering engineering programs)
TIP Program Educational Objectives of the EE Program

Three to five years after graduation, the TIP Electrical Engineering alumni shall

• have advanced their practice or achievement in the field of Electrical Engineering and/or other endeavors or advocacies supported by their acquired engineering education;

• strive to be globally competitive through
 – living by TIP’s mission values, pursuing continuing education, and practicing continuous quality improvement (CQI) in their personal lives;
 – Continuously scanning, adopting and building on the best practices in their field.
Program Level

Student Outcomes/ Program Outcomes specify what students are expected to know and be able to do by the time of graduation. These relate to the skills, knowledge, and behaviors that students acquire as they go through the program.

(CMO No. 37 s. 2012. Policies, standards and guidelines in the establishment of an outcomes-based education(OBE) system in higher education institutions offering engineering programs)
Program outcomes are the sets of competencies (related knowledge, skills, and attitudes) that all learners are expected to demonstrate. Institutional or program outcomes may also emphasize lifelong learning. For instance, HEIs could describe the attributes of their ideal graduates which they expect to see five years after graduation.
Alignment of student outcomes/program with the external and internal competency requirements

Example: **Engineering Programs**

- CHED prescribed competencies
- ABET student outcomes
- Washington accord graduate attributes
- PTC student outcomes
- Institutional prescribed graduate attributes
Alignment of student outcomes/program outcomes with external and internal competency requirements

Example: Education Programs

- CHED prescribed competencies
- National Competency Based Teacher Standards (NCBTS)
- Teaching Competency Standard in Southeast Asian Countries – SEAMEO INNOTECH
- Institutional prescribed graduate attributes
Required Minimum Set of **Program Outcomes**
(as per CHED Administrative Order No. 01 Series 0f 2014)

1. Common to all programs in all types of schools
2. Common to a discipline (such as Engineering, Business, Health Sciences, etc.) to be formulated by the technical panels
3. Specific to a sub-discipline and a major (such as mechanical engineering, entrepreneurship, nursing, etc) to be formulated by the technical committees
4. Common to a horizontal type as defined in CMO 46 s. 2012
5. Optional program outcomes
Required Minimum Set of **Program Outcomes**
(as per CHED Administrative Order No. 01 Series Of 2014)

Common to all programs in all types of schools
The graduates have the ability to

a) Articulate and discuss the latest developments in the specific field of practice (PQF level 6 descriptor)
b) Effectively communicate orally and in writing using both English and Filipino
c) Work effectively and independently in multi-disciplinary and multi-cultural teams (PQF level 6 descriptor)
d) Act in recognition of professional, social, and ethical responsibility
e) Preserve and promote “Filipino historical and cultural heritage” (based on RA 7722)
Required Minimum Set of **Program Outcomes**
(as per CHED Administrative Order No. 01 Series 0f 2014)

1. Common to all programs in all types of schools

2. **Common to a discipline** (such as Engineering, Business, Health Sciences, etc.) to be formulated by the technical panels

3. Specific to a sub-discipline and a major (such as mechanical engineering, entrepreneurship, nursing, etc) to be formulated by the technical committees

4. Common to a horizontal type as defined in CMO 46 s. 2012

5. Optional program outcomes
Required Minimum Set of **Program Outcomes**
(as per CHED Administrative Order No. 01 Series 0f 2014)

1. Common to all programs in all types of schools
2. Common to a discipline (such as Engineering, Business, Health Sciences, etc.) to be formulated by the technical panels
3. **Specific to a sub-discipline and a major** (such as mechanical engineering, entrepreneurship, nursing, etc) to be formulated by the technical committees
4. Common to a horizontal type as defined in CMO 46 s. 2012
5. Optional program outcomes
Required Minimum Set of **Program Outcomes**
(as per CHED Administrative Order No. 01 Series 0f 2014)

1. Common to all programs in all types of schools
2. Common to a discipline (such as Engineering, Business, Health Sciences, etc.) to be formulated by the technical panels
3. Specific to a sub-discipline and a major (such as mechanical engineering, entrepreneurship, nursing, etc) to be formulated by the technical committees

4. **Common to a horizontal type as defined in CMO 46 s. 2012**
 - Graduates of professional institutions demonstrate a service orientation in one’s profession
 - Graduates of colleges participate in various types of employment, development activities, and public discourses, particularly in response to the needs of the communities one serves
 - Graduates of universities participate in the generation of new knowledge or in research and development projects

5. Optional program outcomes
Required Minimum Set of **Program Outcomes**
(as per CHED Administrative Order No. 01 Series 0f 2014)

1. Common to all programs in all types of schools
2. Common to a discipline (such as Engineering, Business, Health Sciences, etc.) to be formulated by the technical panels
3. Specific to a sub-discipline and a major (such as mechanical engineering, entrepreneurship, nursing, etc) to be formulated by the technical committees
4. Common to a horizontal type as defined in CMO 46 s. 2012

5. **Optional program outcomes**
The PSGs shall allow a HEI, at its option, to have mission-related program outcomes that are not included in the minimum set.
Required Minimum Set of **Program Outcomes**
(as per CHED Administrative Order No. 01 Series 0f 2014)

....for State Universities and Colleges, graduates must have the competencies to support “**national, regional and local development plans**”
Sample SOs/POs: Electrical Engineering

By the time of graduation, EE students will be able to:

• apply knowledge of mathematics, science, and engineering to solve complex engineering problems;
• identify, formulate, and solve complex engineering problems;
• solve complex engineering problems by designing systems, components, or processes to meet specifications within realistic constraints such as economic, environmental, cultural, social, societal, political, ethical, health and safety, manufacturability, and sustainability in accordance with standards;
• design and conduct experiments, as well as to analyze, and interpret data, and synthesize information to provide valid conclusions for investigating complex problems;
• use the techniques, skills, and modern engineering tools necessary for engineering practice in complex engineering activities;
• apply knowledge of contemporary issues and the consequent responsibilities relevant to professional engineering practice;
• understand the impact of professional engineering solutions in societal and environmental contexts and demonstrate knowledge of and need for sustainable development;
• apply principles of ethics and commit to professional ethics and responsibilities;
• function effectively as an individual, and as a member or leader in diverse teams and in multidisciplinary settings;
• communicate effectively on complex engineering activities with various communities including engineering experts and society at large using appropriate levels of discourse;
• demonstrate knowledge and understanding of engineering and management principles and apply these to one’s own work, as a member and leader in a team, to manage projects and in multidisciplinary environments;
• recognize the need for, and prepare to engage in lifelong learning.

Outcomes-Based Education: The Technological Institute of the Philippines (TIP) Experience
Example of Program Outcomes

CHED OBE-MF-01.xlsx
Curriculum Mapping

The curriculum map is prepared by making a grid with the outcomes occupying a row and the courses occupying a column (or the other way around). The idea is to check the outcomes to which each course contributes.

(CHED Handbook on Typology, OBE and ISA, 2014)
Examples of Curriculum Map

CHED OBE-MF-01.xlsx
Course outcomes refer to the knowledge, values, and skills all learners are expected to demonstrate at the end of a course. Learning outcomes may result from a specific lesson, although it is sometimes used interchangeably with course outcomes. Thus, in the hierarchy, learning outcomes are seen as building blocks toward course outcomes, which in turn, support the program outcomes.
Mapping of the Curriculum with the Student Outcomes (CE Program)

<table>
<thead>
<tr>
<th>Professional Courses</th>
<th>Units</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
<th>i</th>
<th>j</th>
<th>k</th>
<th>l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elementary Surveying</td>
<td>3</td>
<td>D</td>
<td>D</td>
<td>I</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>Higher Surveying</td>
<td>3</td>
<td>D</td>
<td>D</td>
<td>I</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>Engineering Surveys</td>
<td>4</td>
<td>D</td>
<td>D</td>
<td>I</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>Building Design 1</td>
<td>2</td>
<td>E</td>
<td>E</td>
<td>I</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>Building Design 2</td>
<td>2</td>
<td>E</td>
<td>E</td>
<td>I</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>CE Projects 1</td>
<td>3</td>
<td>D</td>
</tr>
<tr>
<td>CE Projects 2</td>
<td>3</td>
<td>D</td>
</tr>
<tr>
<td>Highway Engineering</td>
<td>3</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>E</td>
<td>I</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>Soil Mechanics</td>
<td>4</td>
<td>D</td>
<td>D</td>
<td>I</td>
<td>E</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>Fluid Mechanics</td>
<td>4</td>
<td>D</td>
<td>D</td>
<td>E</td>
<td>E</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>Structural Theory 1</td>
<td>4</td>
<td>D</td>
<td>D</td>
<td>I</td>
<td>E</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>Transportation Engineering</td>
<td>3</td>
<td>D</td>
</tr>
<tr>
<td>Structural Theory 2</td>
<td>4</td>
<td>D</td>
<td>D</td>
<td>I</td>
<td>E</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>Hydrology</td>
<td>3</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>I</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>Hydraulics Engineering</td>
<td>4</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>E</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>Timber Design</td>
<td>3</td>
<td>D</td>
</tr>
<tr>
<td>Reinforced Concrete Design</td>
<td>6</td>
<td>D</td>
</tr>
<tr>
<td>Water Resources Engineering</td>
<td>3</td>
<td>D</td>
</tr>
<tr>
<td>Foundation Design</td>
<td>4</td>
<td>D</td>
<td>D</td>
<td>I</td>
<td>E</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>Structural Steel Design</td>
<td>4</td>
<td>D</td>
</tr>
<tr>
<td>Construction Materials and Testing</td>
<td>3</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>I</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>Construction Methods and Project Management</td>
<td>4</td>
<td>I</td>
<td>E</td>
<td>D</td>
</tr>
<tr>
<td>CE Laws, Ethics, Codes and Standards</td>
<td>3</td>
<td>E</td>
<td>D</td>
</tr>
<tr>
<td>Earthquake Engineering</td>
<td>3</td>
<td>D</td>
<td>D</td>
<td>I</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>Water and Waste Water Engineering</td>
<td>3</td>
<td>D</td>
<td>D</td>
<td>I</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>Structural Matrix Analysis</td>
<td>3</td>
<td>D</td>
<td>D</td>
<td>I</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>Prestressed Concrete Design</td>
<td>3</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>I</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>On-the-job Training for CE</td>
<td>5</td>
<td>D</td>
<td>I</td>
<td>I</td>
<td>E</td>
<td>I</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>Plant Visits and Seminars for CE</td>
<td>1</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integration Course for CE 1</td>
<td>2</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integration Course for CE 2</td>
<td>2</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integration Course for CE 3</td>
<td>2</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear Algebra with MATLAB</td>
<td>3</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Outcomes-Based Education: The Technological Institute of the Philippines (TIP) Experience
Intended Learning Outcomes (ILOs) at three levels:

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institutional Level</td>
<td>The institutional level, as a statement of what graduates of the institution are supposed to be able to do</td>
</tr>
<tr>
<td>Program Level</td>
<td>The degree program level, as a statement of what graduates from a particular degree program should be able to do</td>
</tr>
<tr>
<td>Course Level</td>
<td>The course level, as a statement of what students should be able to do at the completion of a given course</td>
</tr>
</tbody>
</table>

Course Level

Revision of all Course Syllabi to incorporate Course Intended Learning Outcomes (CILOs)

• What the students can do when they have completed the course/subject
 Ex. Algebra, Communication Arts, etc.
Intended Learning Outcomes (ILOs) at three levels:

- **Institutional Level**: The *institutional level*, as a statement of what graduates of the institution are supposed to be able to do.

- **Degree Program Level**: The *degree program level*, as a statement of what graduates from a particular degree program should be able to do.

- **Course Level**: The *course level*, as a statement of what students should be able to do at the completion of a given course.

Course Level

Revision of all Course Syllabi to incorporate *Course Intended Learning Outcomes (CILOs)*

- What the students can do when they have completed the course/subject
 Ex. Algebra, Communication Arts, etc.
Course Level – Course Intended Learning Outcomes

Note: The course intended learning outcome is a very important component in OBTL implementation that every faculty member should be able to recognize.
Sample TIP Syllabus

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>EE 003</th>
</tr>
</thead>
<tbody>
<tr>
<td>COURSE NAME</td>
<td>ELECTRICAL CIRCUITS 2</td>
</tr>
<tr>
<td>CREDITS</td>
<td>4 units (3 units lecture, 1 unit laboratory)</td>
</tr>
<tr>
<td>CONTACT HOURS</td>
<td>3 hours lecture, 3 hours laboratory</td>
</tr>
<tr>
<td>INSTRUCTOR</td>
<td>Bryan B. Navarro</td>
</tr>
<tr>
<td></td>
<td>Faculty Member, Electrical Engineering</td>
</tr>
<tr>
<td>SPECIFIC COURSE INFORMATION</td>
<td></td>
</tr>
<tr>
<td>a. Course Description</td>
<td>The course introduces the concept of instantaneous electric circuits. It provides the knowledge and principles of AC circuits involving analysis of RLC circuits applied with sinusoidal voltage; complex impedance, bridge circuits; analysis of complex circuits connected with different load impedance; concept of power and power factor correction through power triangle relationship; resonant and tuned circuits, two-port network parameters and transfer function and analysis of dynamic circuits with AC excitation, basic principles of coupled circuits. The students are expected to demonstrate the knowledge and principles of electric circuits in solving complex problem in electrical systems.</td>
</tr>
<tr>
<td>b. Prerequisites</td>
<td>EE 002 (Electrical Circuits 1)</td>
</tr>
<tr>
<td>Co-requisites</td>
<td>MATH 011 (Advanced Engineering Mathematics)</td>
</tr>
<tr>
<td>c. Course Classification</td>
<td>Required</td>
</tr>
<tr>
<td>(Required/elective/Selected elective)</td>
<td></td>
</tr>
</tbody>
</table>
a. Course Objective

The course aims to provide knowledge and principles to students to enhance their critical thinking skills in solving complex AC system through the principles of circuit analysis involving inductive, capacitive and resistive load. The course also aims to characterize, evaluate and compare the output response both in the time and frequency domain relative to the passive elements (resistance, capacitance and inductance) impressed with sinusoidal voltage, to verify the behavior of ac system at with and without static capacitor; analyze ac system under transient current condition, principles of AC bridge circuits and application, Principles of Harmonics and Filters, and analysis of ac system involving Maximum Power Transfer.

b. Course Outcomes

By the end of the course, the students will be able to:

1) **Distinguish** resistive, inductive and capacitive load circuits
2) **Convert** maximum values into root-mean-squared values
3) **Analyze** ac circuits under condition of resonance frequency and during transient current
4) **Use** appropriate techniques in the analysis of ac circuits as applied with ac voltage
5) **Evaluate** the time response of series RL and RC circuits applied with ac voltage
6) **Apply** power factor correction in correcting power factor using power triangle method
7) **Conceptualize** ac bridge circuits as applied to ac system or equipment

c. Student Outcomes Addressed by the Course

a. apply knowledge of mathematics, science, and engineering to solve complex engineering problems
COURSE TOPICS

Prelim Period (Weeks 1–6)

I. Introduction: Vision and Mission; TIP Graduate Attributes/ Institutional Intended Learning Outcomes; Program Educational Objectives/ Student Outcomes; Course Objectives/ Course Intended Learning Outcomes; Course Policies

II. Introduction to AC Electrical System and its Characteristics: Generation of Alternating Current; Average and RMS Values; RLC Circuits; Sum of Voltages with Classical Method; Impedance, and Phase Angle

III. Properties of AC Electric Circuits: Functional Transformation; Ohm’s Law in AC Circuits; Phasor Voltage and Current; Impedance; Reactance; Susceptance; Parallel and Series Operation of Load Impedances

Midterm Period (Week 7-12)

IV. Linear Bilateral Circuits: Analysis of Multiple Sources; Complex Circuits Analysis involving Thevenin’s and Norton’s Theorems; Linear Bilateral Circuits involving Nodal Principles.

V. Power and Power Factor Analysis in Single-Phase and Three-Phase AC Circuits; Power Triangle; Power Factor Correction; Power in Multiple Loads of Inductive, Resistive, and Capacitive Loads; Maximum Power Transfer

Final Period (Weeks 13–18)

VI. AC Circuits Involving Resonance and Tuned Circuits with Varying Frequency: Series and Parallel Resonance in AC Circuits; Bandwidth Frequency; Harmonics, and Harmonic Filters

VII. AC Transients, Over-voltage and Under-voltages and Analysis: Characteristics of AC Transients; Double Energy Transients; Effects of Transients in Electric Power System
<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>BIO 113</th>
</tr>
</thead>
<tbody>
<tr>
<td>COURSE NAME</td>
<td>BIOLOGICAL SCIENCE</td>
</tr>
<tr>
<td>CREDITS</td>
<td>3 units</td>
</tr>
<tr>
<td>CONTACT HOURS</td>
<td>54 hrs</td>
</tr>
<tr>
<td>INSTRUCTOR</td>
<td>Dr. Merle B. Lopez</td>
</tr>
<tr>
<td></td>
<td>Faculty, College of Education</td>
</tr>
<tr>
<td>TEXTBOOK</td>
<td>Formacion, Minda J. et al.</td>
</tr>
<tr>
<td></td>
<td>(2011)Fundamentals of Biology, Rex Book Store, Inc., Quezon City</td>
</tr>
<tr>
<td>OTHER SUPPLEMENTAL MATERIALS</td>
<td>National Geographic (2013) Universal Magazine Exchange (UMX)</td>
</tr>
</tbody>
</table>
Sample Course Syllabus

<table>
<thead>
<tr>
<th>SPECIFIC COURSE INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Course Description</td>
</tr>
<tr>
<td>This course deals with the introduction to concepts in biology and can serve as a foundation of essential knowledge on living things with emphasis the study of structure and functions of the organ systems, with special references to vertebrates. It also covers the various functioning systems of the human body and related the practical applications of knowledge gained in everyday living.</td>
</tr>
<tr>
<td>b. Prerequisites</td>
</tr>
<tr>
<td>Co-requisites</td>
</tr>
<tr>
<td>None</td>
</tr>
<tr>
<td>c. Course Classification (Required/ elective/ selected elective)</td>
</tr>
<tr>
<td>Required</td>
</tr>
</tbody>
</table>
Sample Course Syllabus

SPECIFIC GOALS FOR THE COURSE

a. Course Objective
This course aims to cover brief introduction of biology and its different branches explaining the characteristics of life and the chemical foundations of life, the general structure of eukaryotic and prokaryotic cells related to synthesis of important biological compounds through synthesis and cellular respiration, illustration of human genetic pattern of inheritance leading to individual differences giving emphasis on the various functioning systems of the human body and its practical applications.

b. Course Outcomes
By the end of the course, the students will be able to:
1. **discuss** the importance of the different studies in Biology and the characteristics of life, including the chemical foundations of life;
2. **differentiate** prokaryotic and eukaryotic cells as to their structure and functions supporting the concept of photosynthesis and cellular respiration;
3. **explain** the process of cell division and the cell cycle;
4. **design** a new way in presenting multi-cellular organization of plants tissues as well as animal tissues and organs;
5. **summarize** the different organ systems and their general functions in animals; and
6. **compare and contrast** the different principles of inheritance, chromosomal and molecular basis of inheritance on human beings to support the individual differences, biologically and genetically.
c. Student Outcomes Addressed by the Course

The following student outcomes will be addressed by the course.

1. Demonstrate high level literacy, communication, numeracy, critical and creative thinking, learning skills, and digital fluency needed for higher learning in the field/classroom (student outcome a);
2. Relate classroom activities to the experiences and aspirations of the learners in their homes and communities (student outcome f);
3. Recognize the need for, and prepare to engage in lifelong learning (student outcome h).
Sample Course Syllabus

Course Topics

Prelim Period (Weeks 1–6)

I. **Introduction**: TIP Vision and Mission; TIP Graduate Attributes/ Institutional Intended Learning Outcomes; Program Objectives/ Program Intended Learning Outcomes; Course Objectives/ Course Intended Learning Outcomes; Course Policies

II. **Introduction to Earth Science**: Definition, Characteristics of Living Things, Scientific Method, Theories and Principle

III. **Tissues**: Plant and Animal Tissues

Midterm Period (Weeks 7-12)

Final Period (Weeks 13-17)

V. **Reproduction and Development**: Cell Division and Sexual Reproduction, Organismal reproduction and Development, Reproduction in Plants

VI. **Patterns of Heredity**: Mendelian Inheritance, Modification of Mendelian Inheritance

Final Exam (Week 18)
From Objectives to Intended Learning Outcomes

<table>
<thead>
<tr>
<th>Objectives (old)</th>
<th>ILO (new)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. To provide an understanding of the kinematics and kinetics of machines and the fundamental concepts of stress and strain analysis.</td>
<td>By the end of the course, the students should be able to:</td>
</tr>
<tr>
<td>2. To develop an analytical understanding of the kinematics and kinetics and elastic behaviors of machine elements under loading</td>
<td>1. describe the basic principles of kinematics and kinetics of machines and the fundamental concepts of stress and strain analysis.</td>
</tr>
<tr>
<td></td>
<td>2. solve a mechanical problem that involves loading and motion.</td>
</tr>
<tr>
<td></td>
<td>3. select relevant principles to obtain the solutions for mechanical problems</td>
</tr>
<tr>
<td></td>
<td>4. present analyses and results of experiments in a proper format of a written report such that a technically qualified person can follow and obtain similar findings.</td>
</tr>
</tbody>
</table>

Writing the course intended learning outcomes (ILOs)
ILOs should be stated in such a way that they stipulate:
• The **verb** at the appropriate level of understanding or of performance intended
• the topic **content** the verb is meant to address
• The **context** of the content discipline in which the verb is to be deployed
Some action verbs from Bloom’s revised taxonomy

<table>
<thead>
<tr>
<th>Remembering</th>
<th>Define, describe, draw, find, identify, label, list, match, name, quote, recall, recite, tell, write</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understanding</td>
<td>Classify, compare, conclude, demonstrate, discuss, exemplify, explain, identify, illustrate, interpret, paraphrase, predict, report</td>
</tr>
<tr>
<td>Applying</td>
<td>Apply, change, choose, compute, dramatize, implement, interview, prepare, produce, role play, select, show, transfer, use</td>
</tr>
<tr>
<td>Analyzing</td>
<td>Analyze, characterize, classify, compare, contrast, debate, deconstruct, deduce, differentiate, discriminate, distinguish, examine, organize, outline, relate, research, separate, structure</td>
</tr>
<tr>
<td>Evaluating</td>
<td>Appraise, argue, assess, choose, conclude, critique, decide, evaluate, judge, justify, monitor, predict, prioritize, prove, rank, rate, select</td>
</tr>
<tr>
<td>Creating</td>
<td>Compose, construct, create, design, develop, generate, hypothesize, invent, make, perform, plan, produce</td>
</tr>
</tbody>
</table>

Constructive Alignment of ILO, TLA, and AT
Constructive Alignment of ILO, TLA, AT

<table>
<thead>
<tr>
<th>Course Intended Learning Outcomes (CILOs)</th>
<th>Teaching and Learning Activities (TLAs)</th>
<th>Assessment Tasks (ATs)</th>
<th>Grading Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>CILO #1. Identify the importance of water for human activities and the water resources engineering</td>
<td>Lecture</td>
<td>Essay Reflective Journal</td>
<td>Rubric for Reflection Paper/Essay</td>
</tr>
</tbody>
</table>
Constructive Alignment of ILO, TLA, AT

<table>
<thead>
<tr>
<th>Course Intended Learning Outcomes (CILOs)</th>
<th>Teaching and Learning Activities (TLAs)</th>
<th>Assessment Tasks (ATs)</th>
<th>Grading Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>CILO #1. Identify the importance of water for human activities and the water resources engineering</td>
<td>Lecture Group Discussion</td>
<td>Essay Reflective Journal</td>
<td>Rubric for Reflection Paper/Essay</td>
</tr>
</tbody>
</table>

Outcomes-Based Education: The Technological Institute of the Philippines (TIP) Experience
Constructive Alignment of ILO, TLA, AT

<table>
<thead>
<tr>
<th>Course Intended Learning Outcomes (CILOs)</th>
<th>Teaching and Learning Activities (TLAs)</th>
<th>Assessment Tasks (ATs)</th>
<th>Grading Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>CILO #1. Identify the importance of water for human activities and the water resources engineering</td>
<td>Lecture Group Discussion</td>
<td>Essay Reflective Journal</td>
<td>Rubric for Reflection Paper/Essay</td>
</tr>
</tbody>
</table>
Constructive Alignment of ILO, TLA, AT

<table>
<thead>
<tr>
<th>Course Intended Learning Outcomes (CILOs)</th>
<th>Teaching and Learning Activities (TLAs)</th>
<th>Assessment Tasks (ATs)</th>
<th>Grading Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explain the global hydrologic cycle</td>
<td>Film Showing Software and Simulation</td>
<td>Class Presentation</td>
<td>Rubric for Oral Presentation</td>
</tr>
</tbody>
</table>

Outcomes-Based Education: The Technological Institute of the Philippines (TIP) Experience
Constructive Alignment of ILO, TLA, AT

<table>
<thead>
<tr>
<th>Course Intended Learning Outcomes (CILOs)</th>
<th>Teaching and Learning Activities (TLAs)</th>
<th>Assessment Tasks (ATs)</th>
<th>Grading Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyze rainfall and runoff data</td>
<td>Group Activity</td>
<td>Case Study</td>
<td>Rubric on Case Study</td>
</tr>
</tbody>
</table>
Outcomes-Based Assessment
-to measure the level of attainment of outcomes
Assessment of Outcomes

Assessment in OBE is the process of determining the degree of attainment of an outcome at the course level as well as at the program level.
PROGRAM LEVEL

Example of Assessment for PEOs

• Alumni Survey
• Employer Survey
Assessment of Outcomes at the Classroom Level
Assessment of Student Outcomes

- **Indirect Assessments**
 - Student Survey
 - Faculty Survey
 - Graduating Students Survey

- **Direct Assessments**
 - Using Rubrics
Direct Methods

Direct methods provide for the direct examination or observation of student knowledge or skills against measurable performance indicators.
Indirect Methods

Indirect assessment of student learning ascertain the opinion or self-report of the extent or values of learning experiences.
Assessment Methods

Direct

- Student assignments
- Locally developed exams
- National exams
- Student portfolios

Indirect

- Surveys and questionnaires
- Focus groups
- Advisory board recommendations, polls, exercises
- Exit interview
Instruments Used for the Direct Assessments of Student Outcomes

1. Rubric for SO (a) Engineering Knowledge
2. Rubric for SO (b) Problem Analysis
3. Rubric for SO (c) Multiple Constraints
4. 4.a. Rubric for SO (d1) Conduct of Laboratory Experiments
 4.b. Rubric for SO (d2) Final Laboratory Project
5. Rubric for SO (e) Modern Tool Usage
6. Rubric for SO (f) Contemporary Issues
7. Rubric for SO (g) Environment and Sustainability
8. Rubric for SO (h) Ethics
9. Rubric for SO (i) Individual and Team Work
10. Rubric for SO (j) Effective Communication
11. Rubric for SO (k) Project Management and Finance
12. Rubric for SO (l) Lifelong Learning
RUBRIC FOR ENGINEERING KNOWLEDGE

Student Outcome (a): Apply knowledge of mathematics, science, and engineering to solve complex engineering problems.

<table>
<thead>
<tr>
<th>Performance Indicators</th>
<th>Unsatisfactory</th>
<th>Satisfactory</th>
<th>Exemplary</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Choose the appropriate mathematical, science, and engineering principles in solving problems in engineering.</td>
<td>The student does not know any mathematical, science, and engineering principle that can be used to solve a given engineering problem.</td>
<td>The student can identify but fails to apply an appropriate mathematical, science, and engineering principle to solve an engineering problem.</td>
<td>The student correctly applies an appropriate mathematical, science, and engineering principle to solve an engineering problem.</td>
<td></td>
</tr>
<tr>
<td>1. Examine different approaches in solving problems in engineering and choose the most effective approach.</td>
<td>The student uses a wrong approach in solving problems in engineering.</td>
<td>The student can solve the problem using a single approach.</td>
<td>The student is able to solve the problem correctly using multiple approaches.</td>
<td></td>
</tr>
<tr>
<td>1. Apply the appropriate mathematical, science, and engineering principles to arrive at a solution.</td>
<td>The student cannot solve a given engineering problem.</td>
<td>The student applies mathematical, science, and engineering principle but does not arrive at the correct answer.</td>
<td>The student applies the correct mathematical, science, and engineering principle to solve the problem and arrives at the correct answer.</td>
<td></td>
</tr>
</tbody>
</table>

Total Score

- **Mean Score = (Total Score / 3)**
- **Percentage Rating = (Total Score / 9) x 100%**
Sample Action Plan for Direct Assessment of Student Outcomes

<table>
<thead>
<tr>
<th>Student Outcomes</th>
<th>Direct Assessment Method</th>
<th>Assessment Tool</th>
<th>Source of Assessment</th>
<th>Time of Data Collection</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>Design and conduct experiments, as well as to analyze, and interpret data, and synthesize information to provide valid conclusions for investigating complex problems.</td>
<td>Laboratory Exercises</td>
<td>Rubric for Conduct of Experiments SO (d1)</td>
<td>Feedback and Control Systems Electronic Circuit Analysis and Design</td>
<td>September 2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Final Laboratory Project</td>
<td>Rubric for Final Laboratory Project SO (d2)</td>
<td>Feedback and Control Systems Electronic Circuit Analysis and Design</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>Use the techniques, skills, and modern engineering tools necessary for engineering practice in complex engineering activities.</td>
<td>On-the-Job Training</td>
<td>Rubric for Modern Tool Usage SO (e)</td>
<td>ECE Practicum Industrial Electronics</td>
<td>September 2012 February 2013</td>
</tr>
<tr>
<td>f</td>
<td>Apply knowledge of contemporary issues and the consequent responsibilities relevant to professional engineering practice.</td>
<td>Locally developed examination</td>
<td>Rubric for Contemporary Issues SO (f)</td>
<td>Project Study ECE Laws, Contracts and Ethics</td>
<td>September 2012</td>
</tr>
<tr>
<td>g</td>
<td>Understand the impact of professional engineering solutions in social and environmental contexts, demonstrate knowledge of, and need for sustainable development.</td>
<td>Locally developed examination</td>
<td>Rubric for Environment and Sustainability</td>
<td>Project Study Thesis 1</td>
<td>September 2012</td>
</tr>
</tbody>
</table>
Sample Action Plan for Direct Assessment of Student Outcomes

<table>
<thead>
<tr>
<th>Student Outcomes</th>
<th>Direct Assessment Method</th>
<th>Assessment Tool</th>
<th>Source of Assessment</th>
<th>Time of Data Collection</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>h. Apply principles of ethics and commit to professional ethics and responsibilities.</td>
<td>Culminating Design Project</td>
<td>Rubric for Ethics SO (h)</td>
<td>Communication Systems Design Project Study</td>
<td>September 2012</td>
<td>Chair, Project Design Instructor, Faculty SO Assessment Committee</td>
</tr>
<tr>
<td>i. Function effectively as an individual and as a member or leader in diverse teams and in multidisciplinary setting.</td>
<td>Group Project</td>
<td>Rubric for Individual and Team Work SO (i)</td>
<td>Communication Systems Design Project Study</td>
<td>September 2012</td>
<td>Chair, Faculty SO Assessment Committee</td>
</tr>
<tr>
<td>j. Communicate effectively on complex engineering activities with various communities including engineering experts and society at large using appropriate levels of discourse.</td>
<td>Culminating Design Project</td>
<td>Rubric for Effective Communication SO (j)</td>
<td>Project Study Seminars and Field Trips</td>
<td>September 2012</td>
<td>Chair, Project Design Instructor, Faculty SO Assessment Committee</td>
</tr>
</tbody>
</table>
Sample Action Plan for Direct Assessment of Student Outcomes

<table>
<thead>
<tr>
<th>Student Outcomes</th>
<th>Direct Assessment Method</th>
<th>Assessment Tool</th>
<th>Source of Assessment</th>
<th>Time of Data Collection</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>k. Demonstrate knowledge and understanding of engineering and management principles and apply these to one’s own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.</td>
<td>Group Project</td>
<td>Rubric for Project Management SO (k)</td>
<td>Communication Systems Design Thesis 1</td>
<td>Sep 2012</td>
<td>Chair, Faculty SO Assessment Committee</td>
</tr>
<tr>
<td>l. Recognize the need for, and prepare to engage in lifelong learning.</td>
<td>On-the-Job Training</td>
<td>Rubric for Lifelong Learning</td>
<td>ECE Practicum EC 522</td>
<td>Sep 2012</td>
<td>Chair, OJT Coordinator, Faculty SO Assessment Committee</td>
</tr>
<tr>
<td>Student Outcomes</td>
<td>2012</td>
<td>2013</td>
<td>2014</td>
<td>2015</td>
<td>2016</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>a. apply knowledge of mathematics, science, and engineering to solve complex</td>
<td>●</td>
<td>□</td>
<td>●</td>
<td>□</td>
<td>●</td>
</tr>
<tr>
<td>engineering problems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. identify, formulate, and solve complex engineering problems</td>
<td>●</td>
<td>□</td>
<td>●</td>
<td>□</td>
<td>●</td>
</tr>
<tr>
<td>c. solve complex engineering problems by designing systems, components, or</td>
<td>●</td>
<td>□</td>
<td>●</td>
<td>□</td>
<td>●</td>
</tr>
<tr>
<td>processes to meet specifications within realistic constraints such as economic,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>environmental, cultural, social, societal, political, ethical, health and safety,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>manufacturability, and sustainability in accordance with standards</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- □ Survey for Graduating Students
- ● Students and Faculty Survey
- ♦ Direct Assessment

Outcomes-Based Education: The Technological Institute of the Philippines (TIP) Experience
Assessment Cycle for 2012-2018

<table>
<thead>
<tr>
<th>Student Outcomes</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>d. design and conduct experiments, as well as to analyze, and interpret data,</td>
<td>●</td>
<td>□</td>
<td>●</td>
<td>□</td>
<td></td>
<td></td>
<td>□</td>
</tr>
<tr>
<td>and synthesize information to provide valid conclusions for investigating complex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>problems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. use the techniques, skills, and modern engineering tools necessary for</td>
<td>●</td>
<td>□</td>
<td>●</td>
<td>□</td>
<td></td>
<td></td>
<td>□</td>
</tr>
<tr>
<td>engineering practice in complex engineering activities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f. apply knowledge of contemporary issues and the consequent responsibilities</td>
<td>●</td>
<td>□</td>
<td>●</td>
<td>□</td>
<td></td>
<td></td>
<td>□</td>
</tr>
<tr>
<td>relevant to professional engineering practice</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- □ Survey for Graduating Students
- ● Students and Faculty Survey
- ◆ Direct Assessment

Outcomes-Based Education: The Technological Institute of the Philippines (TIP) Experience
Assessment Cycle for 2012-2018

<table>
<thead>
<tr>
<th>Student Outcomes</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>g. understand the impact of professional engineering solutions in societal and environmental contexts and demonstrate knowledge of and need for sustainable development</td>
<td>● □</td>
<td>●</td>
<td>□</td>
<td>●</td>
<td>□</td>
<td></td>
<td>□</td>
</tr>
<tr>
<td>h. apply principles of ethics and commit to professional ethics and responsibilities</td>
<td>● □</td>
<td>●</td>
<td>□</td>
<td>●</td>
<td>□</td>
<td></td>
<td>□</td>
</tr>
<tr>
<td>i. function effectively as an individual, and as a member or leader in diverse teams and in multidisciplinary settings</td>
<td>● □</td>
<td>●</td>
<td>□</td>
<td>●</td>
<td>□</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- □ Survey for Graduating Students
- ● Students and Faculty Survey
- ♦ Direct Assessment

Outcomes-Based Education: The Technological Institute of the Philippines (TIP) Experience
Assessment Cycle for 2012-2018

<table>
<thead>
<tr>
<th>Student Outcomes</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>j. communicate effectively on complex engineering activities with various communities including engineering experts and society at large using appropriate levels of discourse</td>
<td>● □ ◆</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>k. demonstrate knowledge and understanding of engineering and management principles and apply these to one’s own work, as a member and leader in a team, to manage projects and in multidisciplinary environments</td>
<td>● □ ◆</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l. recognize the need for, and prepare to engage in lifelong learning</td>
<td>● □ ◆</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- □ Survey for Graduating Students
- ● Students and Faculty Survey
- ◆ Direct Assessment
Results of Indirect SO Assessments

Target Level of Attainment: 60% Mean Rating

Student Outcomes SOs

Faculty (%), Graduating (%), Student (%)
<table>
<thead>
<tr>
<th>Student Outcome (a):</th>
<th>Apply knowledge of mathematics, science, and engineering to solve complex engineering problems.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program: _______________</td>
<td>Source of Assessment (Course/Section): _______________ Time of Data Collection: _______________</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Performance Indicators</th>
<th>Student Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choose the appropriate mathematical, science, and engineering principles in solving problems in engineering.</td>
<td>Mean Score</td>
</tr>
<tr>
<td>Examine different approaches in solving problems in engineering and choose the most effective approach.</td>
<td></td>
</tr>
<tr>
<td>Apply the appropriate mathematical, science, and engineering principles to arrive at a solution</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Over-all Students Performance</th>
<th>Mean Raw Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean % Score = ((\text{Mean Raw Score}/3) \times 100%)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prepared by:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Printed Name and Signature of Faculty Member</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Noted by:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Department Chair / Dean</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Approved by:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vice President for Academic Affairs</td>
</tr>
</tbody>
</table>
Summary of Results of Direct Assessments for SOs (a) to (l)

Mean Percentage Rating

Target Level of Attainment: 60%
Mean Rating

Mean Percentage Rating

Student Outcomes
Valid Assessment Methods Generate Useful Data

• **RELEVANT** – measures the educational outcome as *directly* as possible.

• **ACCURATE** – measures the educational outcome as *correctly* as possible.

• **USEFUL** – measures provide formative and summative results with *clear implications* for educational program evaluation and improvement.
Develop A Valid Grading Criteria

- The grading should be in terms of how well students meet the ILOs.
- The assessment task should be a means to assess the outcome.
- Under a holistic, qualitative scheme, a student’s performance is judged against qualitative criteria.
What happens to the assessment results?
What happens to the assessment results?

Use it for Continual Improvement

at the program level
Continuous Quality Improvement (CQI)

- Recommendations of the Faculty CQI Committee
Sample CQI

<table>
<thead>
<tr>
<th>Course</th>
<th>Enhancements in the Syllabi</th>
<th>SO</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 501 Thesis 1 ECE 506 Thesis 2</td>
<td>Integration of multiple constraints and applicable standards in the students’ design works taking into account the health, economic, safety, social and environmental aspects as well as ethics, code of practices, standards and applicable laws.</td>
<td>c</td>
</tr>
<tr>
<td>ECE 004 Principles of Communications</td>
<td>Making the Probability and Statistics course as its pre-requisite</td>
<td>a</td>
</tr>
</tbody>
</table>
Sample Program Plans to Address Student Outcomes

<table>
<thead>
<tr>
<th>Program Plans</th>
<th>To address SOs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Strengthen On-the-Job Training (OJT) program through: Monitoring of ECE students in their OJT where activities should be aligned to the field of expertise. OJTs should have assigned mentor in the company in order for them to be properly guided and monitored.</td>
</tr>
<tr>
<td>2</td>
<td>Intensify industry linkages through OJT, plant visits and through students who will conduct an industry-based project.</td>
</tr>
<tr>
<td>4</td>
<td>Inclusion of patent searching as one of the activities of students enrolled in design courses to conform to intellectual property law,</td>
</tr>
</tbody>
</table>
What happens to the assessment results?

Use it for Continual Improvement

at the classroom level
REFLECT ON YOUR TEACHING
Reflective teaching...

“How can I improve?”

Reference:
Reflect on the **suitability of the intended learning outcomes** and on **what alternative teaching/learning activities and assessment tasks you might best use.**

Reference:
'What else could I be doing that might make the students learn more effectively?'

Reference:
What future actions would you take to encourage a deep approach to learning in your students?

Reference:
what sort of classroom climate are you creating for your students?

Reference:
What’s more important is how you could improve it to facilitate a more desirable learning approach.

Reference:
It’s not what we do but what students do that’s the important thing.

Reference:
Teaching is *causing* people “to learn”.
If the learner does not learn, we have not taught.

Reference:
MISCONCEPTIONS about OUTCOMES-BASED TEACHING AND LEARNING (OBTL)
Misconception No. 1. OBTL is a total deviation from the traditional approach of teaching.
Misconception No.1. OBTL is a total deviation from the traditional approach of teaching

• OBTL is NOT a total deviation from traditional approach of teaching. OBTL does not limit the Teaching Learning Activities (TLAs) to modern and new approaches of teaching. Instead, it gives emphasis on the achievement of Intended Learning Outcomes regardless of the TLA used. Therefore, traditional teaching technique may still be applicable provided it leads to the attainment of the intended outcome.
Misconception No. 2. OBTL is an additional teaching requirement and an added burden on the part of the teacher.
Misconception No. 2.
OBTL is an additional teaching requirement and an added burden on the part of the teacher

• **OBTL should NOT** be regarded as additional teaching requirement or an added burden on the part of the Teacher.

• It is a simple task of re-aligning the contents of the existing Syllabus and lesson plan with the elements of OBTL specifically, the Intended Learning Outcomes (ILO), Teaching and Learning Activities (TLAs) and Assessment Tasks (ATs).
Misconception No. 3. OBTL is not “content-focused”. Therefore, the teacher may not cover the entire syllabus of the course.
Misconception No. 3. OBTL is not “content-focused”. Therefore, the teacher may not cover the entire syllabus of the course.

- OBTL is focused on three elements namely: ILOs, TLAs, and ATs. The teacher should cover every topic that is necessary for the attainment of a given intended learning outcomes. If the teacher feels that a given topic is important to make the students acquire or develop the learning outcomes, then that particular topic should not be missed as part of the lesson.
Misconception No. 4. In OBTL, it is alright for students to become unruly inside the classroom because they are supposed to be engaged in an active learning activity.
Misconception No. 4. In OBTL, it is alright for students to become unruly inside the classroom because they are supposed to be engaged in an active learning activity.

- **OBTL does NOT** tolerate unruly classes, the faculty member should facilitate the TLAs in an orderly manner to avoid distraction of other classes.
- The faculty member should be able to set the proper atmosphere for learning by implementing rules and guidelines towards maintaining discipline and orderliness in the classroom.
Warning!

A faculty member who implements active learning activities can NOT automatically claim that he is doing OBTL unless these activities are aligned toward the attainment of a particular intended learning outcome.
Misconception No. 5. OBTL is allowing the students to study on their own without the teacher doing his/her role to facilitate the learning process.
Misconception No. 5. OBTL is allowing the students to study on their own without the teacher doing his/her role to facilitate the learning process.

- OBTL is a paradigm shift from teacher-centered to student-centered learning, but it does **not** remove the teacher from his role as facilitator of the learning process.
Misconception No. 6.
OBTL is requiring students to do Reporting.
Misconception No. 6. OBTL is requiring students to do Reporting

- OBTL encourages student-centered activities such as reporting or group presentations. However, the faculty member should actively participate in the classroom discussion and act as a facilitator and not merely an observer.

- He/she should be ready to give supplementary discussion in cases when the student reporters fail to elaborate the topics being discussed or when a wrong information or principle is presented.
Misconception No. 7.
OBTL will always require students to do projects.
Misconception No. 7. OBTL will always require students to do projects.

• **NO.** OBTL is not always associated with student projects. There are many possible learning activities or assessment tasks that may be assigned to students.

• A student project may be required only if the teacher feels that it is the most appropriate learning activity and assessment task for an intended learning outcome.
Misconception No. 8.

Every faculty member should follow a prescribed OBTL template.
Misconception No. 8. Every faculty member should follow a prescribed OBTL template.

- There is **NO** universal format for OBTL, only the guiding principle of “constructive alignment”. In OBTL, a template is **NOT** designed. What is being designed are the appropriate TLAs and ATs aligned to ILOs.
- The best practices on the implementation of OBTL come in various styles. No standard template is prescribed **for as long as the appropriate TLAs and ATs are applied that lead to the attainment of the ILOs.**
Misconception No.10. The same TLAs and ATs can be applied in all courses.
Misconception No.9. The same TLAs and ATs can be applied in all courses.

- The TLAs and ATs may vary depending on the ILO. The most appropriate TLAs or ATs should be selected and applied on a case-to-case basis for the attainment of a given ILO.
Misconception No. 11.

OBTL is observable during classroom visitations conducted by the Dean/Department Head.
Misconception No. 11. OBTL is observable during classroom visitations conducted by the Dean/Department Head.

- OBTL is a process which begins by identifying the Intended Learning Outcomes (ILOs), applying the appropriate Teaching and Learning Activities (TLAs) and Assessment Tasks (ATs) and continuously improving the process through a feedback mechanism toward the attainment of the desired outcomes.

- Some OBTL elements may be observed during classroom observations such as the TLAs being employed but the Dean/Chair can NOT generally assess the entire OBTL process at once.
Misconception No. 12.
Faculty members who apply OBTL are entitled to additional pay.
Misconception No. 12. Faculty members who apply OBTL are entitled to additional pay.

- **NO.** It is the responsibility of every faculty member to ensure the delivery of quality education and to cope with the new demands of the teaching profession.
Misconception No. 13. OBTL can not be applied in co-curricular or extra-curricular activities.
Summary
How does OBTL Work?

• In OBTL, ILOs are designed to describe what the students are expected to do at the end of the course or the program.

• To facilitate the achievement of ILOs, teaching and learning activities and assessments are designed to align with the ILOs.

• In OBTL, student learning is supported by classroom teaching that stimulates the learner’s efforts, provide feedback, helps attain required standards, and guides progress to independence as a learner.

Source: University of Hong Kong OBTL Materials
CHED OBE-MF-01
Compliance of HEIs (Section IV of CHED AO 01.s. 2014)

Using the CHED Implementation Handbook for OBE and ISA as reference, a HEI shall develop the following items which will be submitted to CHED when they apply for a permit for a new program or the approval of the transformation of existing programs to outcomes-based framework:

- The complete set of **Program Outcomes**, including its proposed additional program outcomes.
- Its proposed curriculum, and its justification including **Curriculum Map**.
- Proposed **Performance Indicators** for each outcome. Proposed measurement system for the level of attainment of each indicator.
- Proposed **Outcomes-Based Syllabus** for each course. This should already be indicative of the plan of **Delivery** of the curriculum, student assessment and of the resources to be deployed.
- Proposed system of program **Assessment And Evaluation**
- Proposed system of program **Continuous Quality Improvement (CQI)**
Essentials for Effective OBE Implementation:

- A detailed plan for outcomes-based education
- Commitment and full support from the top management
- Capacity building should be given top priority
- Continuous effort for dissemination
- Continuous quality improvement in all aspects of the implementation